3.820 \(\int (c (d \sin (e+f x))^p)^n (a+a \sin (e+f x))^3 \, dx\)

Optimal. Leaf size=299 \[ \frac{a^3 (4 n p+11) \sin ^2(e+f x) \cos (e+f x) \, _2F_1\left (\frac{1}{2},\frac{1}{2} (n p+2);\frac{1}{2} (n p+4);\sin ^2(e+f x)\right ) \left (c (d \sin (e+f x))^p\right )^n}{f (n p+2) (n p+3) \sqrt{\cos ^2(e+f x)}}+\frac{a^3 (4 n p+5) \sin (e+f x) \cos (e+f x) \, _2F_1\left (\frac{1}{2},\frac{1}{2} (n p+1);\frac{1}{2} (n p+3);\sin ^2(e+f x)\right ) \left (c (d \sin (e+f x))^p\right )^n}{f (n p+1) (n p+2) \sqrt{\cos ^2(e+f x)}}-\frac{a^3 (2 n p+7) \sin (e+f x) \cos (e+f x) \left (c (d \sin (e+f x))^p\right )^n}{f (n p+2) (n p+3)}-\frac{\sin (e+f x) \cos (e+f x) \left (a^3 \sin (e+f x)+a^3\right ) \left (c (d \sin (e+f x))^p\right )^n}{f (n p+3)} \]

[Out]

-((a^3*(7 + 2*n*p)*Cos[e + f*x]*Sin[e + f*x]*(c*(d*Sin[e + f*x])^p)^n)/(f*(2 + n*p)*(3 + n*p))) + (a^3*(5 + 4*
n*p)*Cos[e + f*x]*Hypergeometric2F1[1/2, (1 + n*p)/2, (3 + n*p)/2, Sin[e + f*x]^2]*Sin[e + f*x]*(c*(d*Sin[e +
f*x])^p)^n)/(f*(1 + n*p)*(2 + n*p)*Sqrt[Cos[e + f*x]^2]) + (a^3*(11 + 4*n*p)*Cos[e + f*x]*Hypergeometric2F1[1/
2, (2 + n*p)/2, (4 + n*p)/2, Sin[e + f*x]^2]*Sin[e + f*x]^2*(c*(d*Sin[e + f*x])^p)^n)/(f*(2 + n*p)*(3 + n*p)*S
qrt[Cos[e + f*x]^2]) - (Cos[e + f*x]*Sin[e + f*x]*(c*(d*Sin[e + f*x])^p)^n*(a^3 + a^3*Sin[e + f*x]))/(f*(3 + n
*p))

________________________________________________________________________________________

Rubi [A]  time = 0.495259, antiderivative size = 299, normalized size of antiderivative = 1., number of steps used = 7, number of rules used = 6, integrand size = 27, \(\frac{\text{number of rules}}{\text{integrand size}}\) = 0.222, Rules used = {2826, 2763, 2968, 3023, 2748, 2643} \[ \frac{a^3 (4 n p+11) \sin ^2(e+f x) \cos (e+f x) \, _2F_1\left (\frac{1}{2},\frac{1}{2} (n p+2);\frac{1}{2} (n p+4);\sin ^2(e+f x)\right ) \left (c (d \sin (e+f x))^p\right )^n}{f (n p+2) (n p+3) \sqrt{\cos ^2(e+f x)}}+\frac{a^3 (4 n p+5) \sin (e+f x) \cos (e+f x) \, _2F_1\left (\frac{1}{2},\frac{1}{2} (n p+1);\frac{1}{2} (n p+3);\sin ^2(e+f x)\right ) \left (c (d \sin (e+f x))^p\right )^n}{f (n p+1) (n p+2) \sqrt{\cos ^2(e+f x)}}-\frac{a^3 (2 n p+7) \sin (e+f x) \cos (e+f x) \left (c (d \sin (e+f x))^p\right )^n}{f (n p+2) (n p+3)}-\frac{\sin (e+f x) \cos (e+f x) \left (a^3 \sin (e+f x)+a^3\right ) \left (c (d \sin (e+f x))^p\right )^n}{f (n p+3)} \]

Antiderivative was successfully verified.

[In]

Int[(c*(d*Sin[e + f*x])^p)^n*(a + a*Sin[e + f*x])^3,x]

[Out]

-((a^3*(7 + 2*n*p)*Cos[e + f*x]*Sin[e + f*x]*(c*(d*Sin[e + f*x])^p)^n)/(f*(2 + n*p)*(3 + n*p))) + (a^3*(5 + 4*
n*p)*Cos[e + f*x]*Hypergeometric2F1[1/2, (1 + n*p)/2, (3 + n*p)/2, Sin[e + f*x]^2]*Sin[e + f*x]*(c*(d*Sin[e +
f*x])^p)^n)/(f*(1 + n*p)*(2 + n*p)*Sqrt[Cos[e + f*x]^2]) + (a^3*(11 + 4*n*p)*Cos[e + f*x]*Hypergeometric2F1[1/
2, (2 + n*p)/2, (4 + n*p)/2, Sin[e + f*x]^2]*Sin[e + f*x]^2*(c*(d*Sin[e + f*x])^p)^n)/(f*(2 + n*p)*(3 + n*p)*S
qrt[Cos[e + f*x]^2]) - (Cos[e + f*x]*Sin[e + f*x]*(c*(d*Sin[e + f*x])^p)^n*(a^3 + a^3*Sin[e + f*x]))/(f*(3 + n
*p))

Rule 2826

Int[((c_.)*((d_.)*sin[(e_.) + (f_.)*(x_)])^(p_))^(n_)*((a_.) + (b_.)*sin[(e_.) + (f_.)*(x_)])^(m_.), x_Symbol]
 :> Dist[(c^IntPart[n]*(c*(d*Sin[e + f*x])^p)^FracPart[n])/(d*Sin[e + f*x])^(p*FracPart[n]), Int[(a + b*Sin[e
+ f*x])^m*(d*Sin[e + f*x])^(n*p), x], x] /; FreeQ[{a, b, c, d, e, f, m, n, p}, x] &&  !IntegerQ[n]

Rule 2763

Int[((a_) + (b_.)*sin[(e_.) + (f_.)*(x_)])^(m_)*((c_.) + (d_.)*sin[(e_.) + (f_.)*(x_)])^(n_), x_Symbol] :> -Si
mp[(b^2*Cos[e + f*x]*(a + b*Sin[e + f*x])^(m - 2)*(c + d*Sin[e + f*x])^(n + 1))/(d*f*(m + n)), x] + Dist[1/(d*
(m + n)), Int[(a + b*Sin[e + f*x])^(m - 2)*(c + d*Sin[e + f*x])^n*Simp[a*b*c*(m - 2) + b^2*d*(n + 1) + a^2*d*(
m + n) - b*(b*c*(m - 1) - a*d*(3*m + 2*n - 2))*Sin[e + f*x], x], x], x] /; FreeQ[{a, b, c, d, e, f, n}, x] &&
NeQ[b*c - a*d, 0] && EqQ[a^2 - b^2, 0] && NeQ[c^2 - d^2, 0] && GtQ[m, 1] &&  !LtQ[n, -1] && (IntegersQ[2*m, 2*
n] || IntegerQ[m + 1/2] || (IntegerQ[m] && EqQ[c, 0]))

Rule 2968

Int[((a_.) + (b_.)*sin[(e_.) + (f_.)*(x_)])^(m_.)*((A_.) + (B_.)*sin[(e_.) + (f_.)*(x_)])*((c_.) + (d_.)*sin[(
e_.) + (f_.)*(x_)]), x_Symbol] :> Int[(a + b*Sin[e + f*x])^m*(A*c + (B*c + A*d)*Sin[e + f*x] + B*d*Sin[e + f*x
]^2), x] /; FreeQ[{a, b, c, d, e, f, A, B, m}, x] && NeQ[b*c - a*d, 0]

Rule 3023

Int[((a_.) + (b_.)*sin[(e_.) + (f_.)*(x_)])^(m_.)*((A_.) + (B_.)*sin[(e_.) + (f_.)*(x_)] + (C_.)*sin[(e_.) + (
f_.)*(x_)]^2), x_Symbol] :> -Simp[(C*Cos[e + f*x]*(a + b*Sin[e + f*x])^(m + 1))/(b*f*(m + 2)), x] + Dist[1/(b*
(m + 2)), Int[(a + b*Sin[e + f*x])^m*Simp[A*b*(m + 2) + b*C*(m + 1) + (b*B*(m + 2) - a*C)*Sin[e + f*x], x], x]
, x] /; FreeQ[{a, b, e, f, A, B, C, m}, x] &&  !LtQ[m, -1]

Rule 2748

Int[((b_.)*sin[(e_.) + (f_.)*(x_)])^(m_)*((c_) + (d_.)*sin[(e_.) + (f_.)*(x_)]), x_Symbol] :> Dist[c, Int[(b*S
in[e + f*x])^m, x], x] + Dist[d/b, Int[(b*Sin[e + f*x])^(m + 1), x], x] /; FreeQ[{b, c, d, e, f, m}, x]

Rule 2643

Int[((b_.)*sin[(c_.) + (d_.)*(x_)])^(n_), x_Symbol] :> Simp[(Cos[c + d*x]*(b*Sin[c + d*x])^(n + 1)*Hypergeomet
ric2F1[1/2, (n + 1)/2, (n + 3)/2, Sin[c + d*x]^2])/(b*d*(n + 1)*Sqrt[Cos[c + d*x]^2]), x] /; FreeQ[{b, c, d, n
}, x] &&  !IntegerQ[2*n]

Rubi steps

\begin{align*} \int \left (c (d \sin (e+f x))^p\right )^n (a+a \sin (e+f x))^3 \, dx &=\left ((d \sin (e+f x))^{-n p} \left (c (d \sin (e+f x))^p\right )^n\right ) \int (d \sin (e+f x))^{n p} (a+a \sin (e+f x))^3 \, dx\\ &=-\frac{\cos (e+f x) \sin (e+f x) \left (c (d \sin (e+f x))^p\right )^n \left (a^3+a^3 \sin (e+f x)\right )}{f (3+n p)}+\frac{\left ((d \sin (e+f x))^{-n p} \left (c (d \sin (e+f x))^p\right )^n\right ) \int (d \sin (e+f x))^{n p} (a+a \sin (e+f x)) \left (2 a^2 d (2+n p)+a^2 d (7+2 n p) \sin (e+f x)\right ) \, dx}{d (3+n p)}\\ &=-\frac{\cos (e+f x) \sin (e+f x) \left (c (d \sin (e+f x))^p\right )^n \left (a^3+a^3 \sin (e+f x)\right )}{f (3+n p)}+\frac{\left ((d \sin (e+f x))^{-n p} \left (c (d \sin (e+f x))^p\right )^n\right ) \int (d \sin (e+f x))^{n p} \left (2 a^3 d (2+n p)+\left (2 a^3 d (2+n p)+a^3 d (7+2 n p)\right ) \sin (e+f x)+a^3 d (7+2 n p) \sin ^2(e+f x)\right ) \, dx}{d (3+n p)}\\ &=-\frac{a^3 (7+2 n p) \cos (e+f x) \sin (e+f x) \left (c (d \sin (e+f x))^p\right )^n}{f (2+n p) (3+n p)}-\frac{\cos (e+f x) \sin (e+f x) \left (c (d \sin (e+f x))^p\right )^n \left (a^3+a^3 \sin (e+f x)\right )}{f (3+n p)}+\frac{\left ((d \sin (e+f x))^{-n p} \left (c (d \sin (e+f x))^p\right )^n\right ) \int (d \sin (e+f x))^{n p} \left (a^3 d^2 (3+n p) (5+4 n p)+a^3 d^2 (2+n p) (11+4 n p) \sin (e+f x)\right ) \, dx}{d^2 (2+n p) (3+n p)}\\ &=-\frac{a^3 (7+2 n p) \cos (e+f x) \sin (e+f x) \left (c (d \sin (e+f x))^p\right )^n}{f (2+n p) (3+n p)}-\frac{\cos (e+f x) \sin (e+f x) \left (c (d \sin (e+f x))^p\right )^n \left (a^3+a^3 \sin (e+f x)\right )}{f (3+n p)}+\frac{\left (a^3 (5+4 n p) (d \sin (e+f x))^{-n p} \left (c (d \sin (e+f x))^p\right )^n\right ) \int (d \sin (e+f x))^{n p} \, dx}{2+n p}+\frac{\left (a^3 (11+4 n p) (d \sin (e+f x))^{-n p} \left (c (d \sin (e+f x))^p\right )^n\right ) \int (d \sin (e+f x))^{1+n p} \, dx}{d (3+n p)}\\ &=-\frac{a^3 (7+2 n p) \cos (e+f x) \sin (e+f x) \left (c (d \sin (e+f x))^p\right )^n}{f (2+n p) (3+n p)}+\frac{a^3 (5+4 n p) \cos (e+f x) \, _2F_1\left (\frac{1}{2},\frac{1}{2} (1+n p);\frac{1}{2} (3+n p);\sin ^2(e+f x)\right ) \sin (e+f x) \left (c (d \sin (e+f x))^p\right )^n}{f (1+n p) (2+n p) \sqrt{\cos ^2(e+f x)}}+\frac{a^3 (11+4 n p) \cos (e+f x) \, _2F_1\left (\frac{1}{2},\frac{1}{2} (2+n p);\frac{1}{2} (4+n p);\sin ^2(e+f x)\right ) \sin ^2(e+f x) \left (c (d \sin (e+f x))^p\right )^n}{f (2+n p) (3+n p) \sqrt{\cos ^2(e+f x)}}-\frac{\cos (e+f x) \sin (e+f x) \left (c (d \sin (e+f x))^p\right )^n \left (a^3+a^3 \sin (e+f x)\right )}{f (3+n p)}\\ \end{align*}

Mathematica [A]  time = 1.39676, size = 297, normalized size = 0.99 \[ -\frac{a^3 \sin (e+f x) \cos (e+f x) \sqrt{\cos ^2(e+f x)} \left (\left (n^3 p^3+9 n^2 p^2+26 n p+24\right ) \, _2F_1\left (\frac{1}{2},\frac{1}{2} (n p+1);\frac{1}{2} (n p+3);\sin ^2(e+f x)\right )+\frac{1}{2} (n p+1) \sin (e+f x) \left (6 \left (n^2 p^2+7 n p+12\right ) \, _2F_1\left (\frac{1}{2},\frac{n p}{2}+1;\frac{n p}{2}+2;\sin ^2(e+f x)\right )+2 (n p+2) \sin (e+f x) \left (3 (n p+4) \, _2F_1\left (\frac{1}{2},\frac{1}{2} (n p+3);\frac{1}{2} (n p+5);\sin ^2(e+f x)\right )+(n p+3) \sin (e+f x) \, _2F_1\left (\frac{1}{2},\frac{n p}{2}+2;\frac{n p}{2}+3;\sin ^2(e+f x)\right )\right )\right )\right ) \left (c (d \sin (e+f x))^p\right )^n}{f (n p+1) (n p+2) (n p+3) (n p+4) (\sin (e+f x)-1) (\sin (e+f x)+1)} \]

Antiderivative was successfully verified.

[In]

Integrate[(c*(d*Sin[e + f*x])^p)^n*(a + a*Sin[e + f*x])^3,x]

[Out]

-((a^3*Cos[e + f*x]*Sqrt[Cos[e + f*x]^2]*Sin[e + f*x]*(c*(d*Sin[e + f*x])^p)^n*((24 + 26*n*p + 9*n^2*p^2 + n^3
*p^3)*Hypergeometric2F1[1/2, (1 + n*p)/2, (3 + n*p)/2, Sin[e + f*x]^2] + ((1 + n*p)*Sin[e + f*x]*(6*(12 + 7*n*
p + n^2*p^2)*Hypergeometric2F1[1/2, 1 + (n*p)/2, 2 + (n*p)/2, Sin[e + f*x]^2] + 2*(2 + n*p)*Sin[e + f*x]*(3*(4
 + n*p)*Hypergeometric2F1[1/2, (3 + n*p)/2, (5 + n*p)/2, Sin[e + f*x]^2] + (3 + n*p)*Hypergeometric2F1[1/2, 2
+ (n*p)/2, 3 + (n*p)/2, Sin[e + f*x]^2]*Sin[e + f*x])))/2))/(f*(1 + n*p)*(2 + n*p)*(3 + n*p)*(4 + n*p)*(-1 + S
in[e + f*x])*(1 + Sin[e + f*x])))

________________________________________________________________________________________

Maple [F]  time = 0.44, size = 0, normalized size = 0. \begin{align*} \int \left ( c \left ( d\sin \left ( fx+e \right ) \right ) ^{p} \right ) ^{n} \left ( a+a\sin \left ( fx+e \right ) \right ) ^{3}\, dx \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

int((c*(d*sin(f*x+e))^p)^n*(a+a*sin(f*x+e))^3,x)

[Out]

int((c*(d*sin(f*x+e))^p)^n*(a+a*sin(f*x+e))^3,x)

________________________________________________________________________________________

Maxima [F]  time = 0., size = 0, normalized size = 0. \begin{align*} \int{\left (a \sin \left (f x + e\right ) + a\right )}^{3} \left (\left (d \sin \left (f x + e\right )\right )^{p} c\right )^{n}\,{d x} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((c*(d*sin(f*x+e))^p)^n*(a+a*sin(f*x+e))^3,x, algorithm="maxima")

[Out]

integrate((a*sin(f*x + e) + a)^3*((d*sin(f*x + e))^p*c)^n, x)

________________________________________________________________________________________

Fricas [F]  time = 0., size = 0, normalized size = 0. \begin{align*}{\rm integral}\left (-{\left (3 \, a^{3} \cos \left (f x + e\right )^{2} - 4 \, a^{3} +{\left (a^{3} \cos \left (f x + e\right )^{2} - 4 \, a^{3}\right )} \sin \left (f x + e\right )\right )} \left (\left (d \sin \left (f x + e\right )\right )^{p} c\right )^{n}, x\right ) \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((c*(d*sin(f*x+e))^p)^n*(a+a*sin(f*x+e))^3,x, algorithm="fricas")

[Out]

integral(-(3*a^3*cos(f*x + e)^2 - 4*a^3 + (a^3*cos(f*x + e)^2 - 4*a^3)*sin(f*x + e))*((d*sin(f*x + e))^p*c)^n,
 x)

________________________________________________________________________________________

Sympy [F(-1)]  time = 0., size = 0, normalized size = 0. \begin{align*} \text{Timed out} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((c*(d*sin(f*x+e))**p)**n*(a+a*sin(f*x+e))**3,x)

[Out]

Timed out

________________________________________________________________________________________

Giac [F]  time = 0., size = 0, normalized size = 0. \begin{align*} \int{\left (a \sin \left (f x + e\right ) + a\right )}^{3} \left (\left (d \sin \left (f x + e\right )\right )^{p} c\right )^{n}\,{d x} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((c*(d*sin(f*x+e))^p)^n*(a+a*sin(f*x+e))^3,x, algorithm="giac")

[Out]

integrate((a*sin(f*x + e) + a)^3*((d*sin(f*x + e))^p*c)^n, x)